94 Percival and Graham: Inducing Agents and Fungicide Combinations for Pathogen Management Oliva J, Stenlid J, Martínez-Vilalta J. 2014. The effect of fungal pathogens on the water and carbon economy of trees: Impli- cations for drought-induced mortality. New Phytologist. 203(4):1028-1035. https://doi.org/10.1111/nph.12857 Pallardy S. 2008. Physiology of woody plants. 3rd Ed. Burlington (MA, USA): Academic Press, Elsevier. 464 p. Percival GC. 2018. Evaluation of silicon fertilizers and a resistance inducing agent for control of apple and pear scab under field conditions. Arboriculture & Urban Forestry. 44(5):205-214. Percival GC, Haynes I. 2008. The influence of systemic inducing resistance chemicals for the control of oak powdery mildew (Microsphaera alphitoides) applied as a therapeutic treatment. Arboriculture & Urban Forestry. 34(5):191-200. Percival GC, Noviss K, Haynes I. 2009. Field evaluation of sys- temic inducing resistance chemicals at different growth stages for the control of apple (Venturia inaequalis) and pear (V. pirina) scab. Crop Protection. 28:629-633. https://doi.org/10 .1016/j.cropro.2009.03.010 Perez L, Rodriguez F, Rodriguez ME, Roson C. 2003. Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f. sp. tabacina. Crop Protection. 22(2):405-413. https://doi.org/10.1016/S0261-2194(02)00198-9 Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology. 52:347-375. https://doi.org/10.1146/annurev-phyto-082712 -102340 Ritchie GA, Dunlop JR. 1980. Root growth potential: Its devel- opment and expression in forest tree seedlings. New Zealand Journal of Forest Science. 10(1):218-248. Ryley R, Bhuiyan S, Herde D, Gordan B. 2003. Efficacy, timing and method of application of fungicides for management of sorghum ergot caused by Claviceps africana. Australasian Plant Pathology. 32:329-338. https://doi.org/10.1071/AP03034 Spoel S, Dong X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology. 12:89-100. https://doi.org/10.1038/nri3141 Struve DK. 1990. Root regeneration in transplanted deciduous nursery stock. HortScience. 25(3):266-270. https://doi.org/10 .21273/HORTSCI.25.3.266 Swait AAJ, Butt DJ. 1990. Fungicides as antisporulants against apple powdery mildew and scab. Tests of agrochemicals and cultivars, 11. Wellesbourne (UK): Association of Applied Biologists. Tubby KV, Webber JF. 2010. Pests and diseases threatening urban trees under a changing climate. Forestry: An International Journal of Forest Research. 83(4):451-459. https://doi.org/10 .1093/forestry/cpq027 Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science. 44(6):1920-1934. https://doi.org/10.2135/ cropsci2004.1920 Van Loon LC, Bart PJ, Huub G, Linthorst JM. 2002. Ethylene as a modulator of disease resistance in plants. Trends in Plant Science. 11(4):184-191. https://doi.org/10.1016/j.tplants.2006 .02.005 Villalta ON, Washington WS, McGregor G. 2004. Susceptibility of European and Asian pears to pear scab. Plant Protection Quarterly. 19(1):2-4. Walters DR. 2009. Are plants in the field already induced? Implications for practical disease control. Crop Protection. 28(6):459-465. https://doi.org/10.1016/j.cropro.2009.01.009 Walters DR, Ratsep J, Havis N. 2013. Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany. 64(5):1263-1280. https://doi.org/10 .1093/jxb/ert026 Walters D, Walsh D, Newton A, Lyon G. 2005. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology. 95(12):1368-1373. https://doi.org/10 .1094/PHYTO-95-1368 Witzell J, Martin JA. 2008. Phenolic metabolites in the resistance of northern forest trees to pathogens – Past experiences and future prospects. Canadian Journal of Forest Research. 38(11):2711-2727. https://doi.org/10.1139/X08-112 ACKNOWLEDGMENTS The authors are grateful for funding, in part, from the TREE FUND (Hyland Johns Grant). Thanks also to Miss Emma Schaf- fert for help in experimental set and data collection. Glynn C. Percival (corresponding author) Bartlett Tree Research Laboratory Reading University Cut Bush Lane East Shinfield, Reading, UK
[email protected] Sean Graham Bartlett Tree Research Laboratory Reading University Cut Bush Lane East Shinfield, Reading, UK Conflicts of Interest: The authors reported no conflicts of interest. Résumé. Les agents pathogènes foliaires non contrôlés peuvent être préjudiciables à la santé et à l’esthétique des arbres. La dé- pendance excessive à l’égard des fongicides synthétiques signifie que des moyens alternatifs de gestion des pathogènes sont main- tenant nécessaires. Le but de ces projets de recherche était d’étu- dier l’efficacité de trois agents disponibles dans le commerce, soit la protéine harpine, un dérivé de l’acide salicylique et le chitosane liquide, qui peuvent initier une résistance induite (RI) chez les végétaux. Des agents RI furent appliqués individuellement et en combinaison avec un fongicide synthétique (boscalide + py- raclostrobine) contre 2 pathogènes foliaires (Venturia pirina et Guignardia aesculi) dans des conditions réelles avec Pyrus com- munis ‘Williams’ Bon Chrétien’ et le marronnier d’Inde (Aescu- lus hippocastanum) agissant comme arbres hôtes. Ces agents furent évalués durant trois années consécutives. Pour 4 de ces 5 études de terrain, l’utilisation d’un agent RI en solo a permis de ©2021 International Society of Arboriculture
March 2021
Title Name |
Pages |
Delete |
Url |
Empty |
Search Text Block
Page #page_num
#doc_title
Hi $receivername|$receiveremail,
$sendername|$senderemail wrote these comments for you:
$message
$sendername|$senderemail would like for you to view the following digital edition.
Please click on the page below to be directed to the digital edition:
$thumbnail$pagenum
$link$pagenum