284 Al-Habsi and Percival: Sucrose-Induced Tolerance to and Recovery from Deicing Salt Damage Hasegawa, P.M., R.A. Bressan, J. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high sa- linity. Annual Review of Plant Physiology and Plant Mo- lecular Biology 51:463–499. Hermans, C., M. Smeyers, R. Maldonado, M. Eyletters, R.J. Strasser, and J.P. Delhayne. 2003. Quality assessment of urban trees. A comparative study of physiological char- acterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test. Journal of Plant Physiology 160:81–90. Kitao, M., T.T. Lei, and T. Koike. 1998. Application of chlo- rophyll fluorescence to evaluate Mn tolerance of decidu- ous broad-leaved tree seedlings native to northern Japan. Tree Physiology 18:135–140. Koch, K. 1996. Carbohydrate modulated gene expression in plants. Annual Review of Plant Physiology 47:509–540. Levitt, J. 1980. Responses of plants to environmental stress, Vol I. Academic Press, New York, NY. pp. 202–207. Lichtenthaler, H.K., S. Burkart, C. Schindler, and F. Stober. 1992. Changes in photosynthetic pigments and in vivo chlorophyll fluorescence parameters under photoinhibi- tory growth conditions. Photosynthetica 27:343–353. Lichtenthaler, H.K., and A.R. Wellburn. 1983. Determina- tions of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Trans- actions 11:591–593. Naidoo, L., and T. Naidoo. 1992. Waterlogging responses of Sporobolus virginicus (L.). Kunth. Oecologia 90: 445–450. Percival, G.C., and G.A. Fraser. 2001. Measurement of the salinity and freezing tolerance of Crataegus genotypes using chlorophyll fluorescence. Journal of Arboriculture 27:233–245. ———. 2005. Use of sugars to improve root growth and increase transplant success of Birch (Betula pendula Roth.). Journal of Arboriculture 31:66–78. Percival, G.C., and A. Henderson. 2002. The influence of de-icing salts on growth and leaf photochemistry of seven urban tree species. Arboricultural Journal 26:23–43. Robertson, A.J., M. Ishikawa, L.V. Gusta, and S.L. MacKen- zie. 1994. Abscisic acid-induced heat tolerance in Bromus inermis cell-suspension cultures. Heat-stable abscisic acid-responsive polypeptides in combination with sucrose confer enhanced stability. Plant Physiology 105:181–190. Ryan, J. 2005. Salt damage to trees. Essential ARB. 16: 11–12. Schindler, C., and H.K. Lichtenthaler. 1994. Is there a cor- relation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence? Plant Physiology and Biochemistry 32:813–823. Sulmon, C., G. Gouesbet, I. Couée, and A. El Amrani. 2004. Sugar-induced tolerance to atrazine in Arabidopsis seed- lings: Interacting effects of atrazine and soluble sugars on ©2006 International Society of Arboriculture psbA mRNA and D1 protein levels. Plant Science 167: 913–923. VanToai, T.T., P. Saglio, B. Richards, and A. Pradet. 1995. Developmental regulation of anoxia stress tolerance in maize. Plant, Cell & Environment 18:937–942. Vartapetian, B.B. 1993. Plant physiological responses to an- oxia. International Crop Science Proceedings, 1:721–726. Madison, WI, Crop Science of America. Waters, I., P.J.C. Kuiper, E. Watkin, and H. Greenway. 1991. Effects of anoxia on wheat seedlings. I. Interactions be- tween anoxia and other environmental factors. Journal of Experimental Botany 42:1427–1435. Webb, T., and W. Armstrong. 1983. The effects of anoxia and carbohydrates on the growth, vitality of rice, pea and pumpkin roots. Journal of Experimental Botany 34: 579–603. Williamson, J.D., D.B. Jennings, W.W. Guo, D.M. Pharr, and M. Ehrenshaft. 2002. Sugar alcohols, salt stress and fun- gal resistance: Polyols-multifunctional plant protection. Journal of the American Society for Horticultural Science 127:467–473. Zhu, J.K. 2001. Plant salt tolerance. Trends in Plant Science 6:66–71. Sulaiman Al-Habsi Research Assistant and MSc Candidate R.A. Bartlett Tree Research Laboratory, Europe The University of Reading 2 Early Gate, Whiteknights Reading, RG6 6AU, United Kingdom Glynn C. Percival (corresponding author) Plant Physiologist/Technical Support Specialist R.A. Bartlett Tree Research Laboratory, Europe The University of Reading 2 Early Gate, Whiteknights Reading, RG6 6AU, United Kingdom
[email protected] Résumé. Deux expériences sur le terrain ont été menées au moyen de houx (Ilex aquifolium L.) et de chêne anglais (Quercus robur L.) en contenant afin de déterminer l’efficacité et la faisabilité du saccharose pour améliorer la tolérance et la reprise suite à des dommages par le sel de déglaçage (chlorure de sodium ou NaCl). Dans l’expérience no 1, du saccharose ou de l’eau simplement dans le cas du groupe-témoin ont été appliqué par trempage des racines sur les végétaux en contenant. Soixante-douze heures plus tard, le NaCl a été appliqué sur les deux espèces par trempage des racines. Au jour 15 suivant l’application du NaCl, les effets sur les concen- trations en chlorophylle foliaire a et b, en caroténoïdes (lutéine, -carotène, néoxanthine, -carotène) et en xantophylles (zéaxan- thine, anthéraxanthine, violaxanthine) ainsi que la nécrose foliaire et
November 2006
Title Name |
Pages |
Delete |
Url |
Empty |
Search Text Block
Page #page_num
#doc_title
Hi $receivername|$receiveremail,
$sendername|$senderemail wrote these comments for you:
$message
$sendername|$senderemail would like for you to view the following digital edition.
Please click on the page below to be directed to the digital edition:
$thumbnail$pagenum
$link$pagenum