Arboriculture & Urban Forestry 32(6): November 2006 295 Bunt, A.C. 1961. Some physical properties of pot plant com- posts and their effect on plant growth: 1. Bulky physical conditions. Plant and Soil 13:322–323. Chaney, R.L. 1973. Crop and food chain effects on toxic elements in sludges and effluents, pp. 129–146. In Com- post: Production, Quality and Use. DeBertoldi, M., Fer- ranti, M.P., Hermite, L., and Zucconi F., Eds. Elsevier Applied Science, New York, NY. Corley, W.L. 1984. Soil amendments at planting. Journal of Environmental Horticulture 2:27–30. Ferrini, F., A. Giuntoli, F.P. Nicese, S. Pellegrini, and N. Vignozzi. 2005. Effect of fertilization and backfill amend- ments on soil characteristics, growth and leaf gas ex- change of English oak (Quercus robur L.). Journal of Arboriculture 31:182–189. Gerrard, J. 2000. Fundamentals of Soils. Routledge, New York, NY. 230 pp. Gilman, E.F. 2004. Effects of amendments, soil additives, and irrigation on tree survival and growth. Journal of Ar- boriculture 30:301–304. Gouin, F.R., and J.M. Walker. 1977. Deciduous tree seedling response to nursery soil amended with composted sewage sludge. HortScience 12:45–47. Harrison, E.Z., and T.R. Richard. 2005. Municipal solid waste composting: Issues in policy and regulation. MSW Composting Fact Sheet No. 6, Cornell University, Ithaca, NY. 5 pp. Hodge, S.J. 1995. The effect of seven organic amendments on planting pit soil and tree performance. Arboricultural Journal 19:245–266. Kelting, M., J.R. Harris, J. Fanelli, and B. Appleton. 1998. Biostimulants and soil amendments affect two-year post- transplant growth of red maple and Washington haw- thorne. HortScience 33:819–822. Klock-Moore, K.A. 1999. Growth of impatiens ‘Accent Or- ange’ in two compost products. Compost Science & Uti- lization 7:58–62. Kramer, P.J., and T.T. Kozlowski. 1979. Physiology of Woody Plants. Academic Press, Inc., New York, NY. 811 pp. Lal, R., and M.J. Shukla. 2004. Principles of Soil Physics. Marcel Dekker, Inc., New York, NY. 716 pp. Niedziela, C.E. Jr., and P.V. Nelson. 1992. A rapid method for determining physical properties of undisturbed sub- strate. HortScience 27:1279–1280. Nowak, D.J., J.C. Stevens, S.M. Sisinni, and C.J. Luley. 2002. Effects of urban tree management and species se- lection on atmospheric carbon dioxide. Journal of Ar- boriculture 28:113–122. Ozores-Hampton, M., P.A. Stansly, R. McSorley, and T.A. Obreza. 2005. Effects of long-term organic amendments and soil solarization on pepper and watermelon growth, yield, and fertility. HortScience 40:80–84. Roberts, B.R., H.F. Decker, K.J. Bagstad, and K.A. Peterson. 2001a. Biosolid residues as soilless media for growing wildflower sod. HortTechnology 11:194–199. Roberts, B.R., H.F. Decker, L.M. Ganahl, and E. Yarmark. 2001b. Biosolid residues as soilless media for growing creeping bentgrass sod. HortTechnology 11:451–455. Schulte, J.R., and C.E. Whitcomb. 1975. Effects of soil amendments and fertilizer levels on the establishment of silver maple. Journal of Arboriculture 1:192–195. Smalley, T.J., and C.B. Wood. 1995. Effect of backfill amendment on growth of red maple. Journal of Arbori- culture 21:247–249. Tyler, R.W. 1996. Winning the Organics Game. The Com- post Marketer’s Handbook. American Society of Horti- cultural Science Press, Alexandria, VA. 269 pp. Watson, G.W., G. Kupkowski, and K.G. von der Heide- Spravka. 1992. The effect of backfill soil texture and planting hole shape on root regeneration of transplanted green ash. Journal of Arboriculture 18:130–134. White, J.W., and J.W. Mastalerz. 1966. Soil moisture as re- lated to ‘container capacity.’ Proceedings of the American Society for Horticultural Science 89:758–765. Bruce R. Roberts Department of Botany and Microbiology Ohio Wesleyan University Delaware, OH 43015, U.S.
[email protected] Résumé. Des études en serre ont été menées afin de déterminer l’influence du substrat composté sur la croissance post- transplantation de semis d’érable rouge, d’érable à sucre et de frêne de Pennsylvanie en contenant. Préalablement à la plantation, les propriétés chimiques et physiques de chaque substrat ont été mesurées. Pour le substrat contenant des bio-solides, le pH était significativement plus élevé tandis que la conductivitéélectrique, la porositéà l’air et la quantité totale d’espace des pores étaient plus faibles, et ce par rapport au substrat sans bio-solides. Pour les sub- strats compostés contenant au moins un peu de sol, la densité du sol, la densité en particules et la capacité des contenants étaient tous significativement plus grandes que pour les composts sans sol. La croissance de l’érable rouge était à peu prèslamême dans un sub- strat non composté sans sol (Metro-mix 360) que dans les substrats contenant des bio-solides compostés. La croissance en hauteur, la biomasse totale et la biomasse racinaire du frêne de Pennsylvanie étaient significativement plus grandes pour les semis dans le Metro- mix 360 seul, et la croissance des semis d’érable à sucre était la même dans le Metro-mix 360 que dans un substrat composté sans bio-solides (Metro mix 560). Les résultats de cette étude suggèrent qu’il n’yapasd’avantage particulier à court terme sur la croissance à employer un substrat composté comme amendement au matériel de remplissage lors de la transplantation; néanmoins, l’ajout de com- post peut être bénéfique pour améliorer les propriétés chimiques et ©2006 International Society of Arboriculture
November 2006
Title Name |
Pages |
Delete |
Url |
Empty |
Search Text Block
Page #page_num
#doc_title
Hi $receivername|$receiveremail,
$sendername|$senderemail wrote these comments for you:
$message
$sendername|$senderemail would like for you to view the following digital edition.
Please click on the page below to be directed to the digital edition:
$thumbnail$pagenum
$link$pagenum