Arboriculture & Urban Forestry 37(1): January 2011 Acknowledgments. Thank you to Dr. Gregory Dahle for assistance in data collection and manuscript preparation. Thank you to Walter Joncas for use of shop space, tool assistance and serving as an intellectual sound- ing board in the final data collection phases. Thanks to S. Williamson and M. Applegate in the machine shop in Rutgers Cook campus for taking rough hand sketches through C.A.D. design and machining-fabrication. Thanks to folks at Novel electronics for several hours of tech support in developing the pad logistics for testing. Funding was provided in part by McIntire Stennis project funds and the John and Eleanor Kuser faculty Scholar endowment. LITERATURE CITED American Society of Testing and Materials. 2005. Standard Method of Sieve Analysis of Fine and Coarse Aggregates, Section 4 Construc- tion Annual Book of ASTM Standards volume 4.08 ASTM Standard C-136-05. ASTM, Philadelphia, PA. Bartens, J., J.R. Harris, S.D. Day, J.E. Dove, and T.M. Wynn. 2008. Can urban tree roots improve infiltration through compacted sub- soils for stormwater management? Journal of Environmental Quality 37:2048–2057. Bühler, O., P. Kristofferson, and S.U. Larson. 2007. Growth of street trees in Copenhagen with emphasis on the effect of different estab- lishment concepts. Arboriculture & Urban Forestry 33(5):330–337. Cheng, Y.P., M.D. Bolton, and Y. Nakata. 2004. Crushing and plastic deformation of soils simulated using DEM. Geotechnique 54(2): 131–141. Chiroux, R.C., W.A. Foster, Jr., C.E. Johnson, S.A. Shoop, and R.L. Raper. 2004. Three-dimensional finite element analysis of soil in- teraction with a rigid wheel. Applied mathematics and computation 162(2005):707–722. Costello, L.R., and K.S. Jones. 2003. Reducing infrastructure damage by tree roots: a compendium of strategies. WCISA, Cohasset, CA. Das, B.M. 2004. Principles of Foundation Engineering 5E. Brooks/Cole – Thompson Learning. Pacific Grove CA. 743 pp. Day, S.D., and S.B. Dickinson (Eds.). 2008. Managing stormwater for urban sustainability using trees and structural soils. Virginia Poly- technic Institute and State University, Blacksburg, VA. Grabosky, J., and N. Bassuk. 2008. Growth of three tree species in de- signed stone-soil blend under pavement and non-paved lawn in a Brooklyn, New York Streetscape: tenth year data. Arboriculture & Urban Forestry 34(4):265–266. Grabosky, J., N. Bassuk, H. van Es. 1996. Testing of structural urban tree soil materials for use under pavement to increase street tree rooting volumes. Journal of Arboriculture 22(6):255–263. Grabosky, J., T. Haffner, and N. Bassuk. 2009. Measurements of plant available moisture behavior in stone-soil blends for establishing trees and supporting pavement in urban settings. Arboriculture & Urban Forestry 35(5):271–279. Grabosky, J.C., E.T. Smiley, and G.A. Dahle. 2011. Observed Symme- try and force of Plantanus × acerifolia (Ait.) Willd. Roots occurring between foam layers under pavement. Arboriculture & Urban For- estry 37(1):35–40. Hewes, L.I. 1942. Grading the roadbed. p. 141–194. In: American high- way practice. John Wiley and Sons, New York, NY. Holtz, R.D., and W.D. Kovacs. 1981. Consolidation and consolidation settlements. p. 283–367. In: An Introduction to Geotechnical Engi- neering. Prentice Hall, Englewood Cliffs, NJ. Liingaard, M., A. Augustesen, and P.V. Lade. 2004. Characterization of models for time-dependent behavior in soils. International Journal of Geomechanics 4(3):157–177. 33 McPherson, E.G., J.R. Simpson, P.J. Peper, Q. Xiao, D.R. Pettinger, and D.R. Hodel. 2001. Tree Guidelines for Inland Empire Communities. Local Government Commission. Sacramento, CA. National Cooperative Highway Research Program. 1993. AASHTO guide for design of pavement structures 1993. Association of Ameri- can State and Highway Transportation Officials (AASHTO) Wash- ington D.C. 640 pp. Rahardjo, H., I.G.B. Indrawan, E.C. Leong, and W.K. Yong. 2008. Ef- fects of coarse-grained material on hydraulic properties and shear strength of top soil. Journal of Engineering Geology 101:165–173. Scott, K.I., J.R. Simpson, and E.G. McPherson. 1999. Effects of tree cover on parking lot microclimate and vehicle emissions. Journal of Arboriculture 25(3):129–142. Smiley, T.E., L. Calfee, B. Fraedrich, and E.J. Smiley. 2006. Compaction of Structural Soil and Noncompacted Soils for Trees Surrounded by Pavement. Arboriculture & Urban Forestry 32(4):164–169. Swiecki, T.J., and E. Bernhardt. 2001. Guidelines for Developing and Evaluating Tree Ordinances. Accessed May 24, 2010.
. International Society of Arboriculture, Champaign, IL. Westergaard, H.M. 1926. Stresses in concrete pavement computed by theoretical analysis. Public Roads 7(2):25–35. Jason C. Grabosky (corresponding author) Associate Professor Rutgers University Department of Ecology Evolution and Natural Resources 1 College Farm Road New Brunswick, NJ 08901, US [email protected] Nenad Gucunski Professor Rutgers University Department of Civil and Environmental Engineering Center for Advanced Infrastructure and Transportation Résumé. Dans le but de modéliser les impacts de la croissance des racines sous une surface pavée composée de différentes couches de fondation, le comportement des différentes composantes doit être défini ou supposé. Étant donné que le comportement des matériaux et du design des différentes couches sous le pavage fonctionne selon des hypothèses de charges appliquées sur le dessus de la surface pavée, il est raisonnable de pouvoir vérifier les hypothèses de comportement au moyen d’une méthode d’essai pour contrôler les charges appliquées sur le dessus par rapport à la croissance d’une racine vivace. Une simula- tion racinaire a été développée en insufflant de l’eau à une pression dé- finie. Le déplacement des particules de sable en réponse à la pression accrue a été enregistré avec différentes densités de sable appariées avec le degré d’humidité. Des cellules de charge ont enregistré la translation du déplacement du sable en regard d’une charge sur une surface pavée simulée afin de développer un échantillonnage de données d’une ligne de charges qui s’étend sur une large distance avec l’accroissement en distance entre la racine et la surface pavée. Les résultats des expéri- ences en laboratoire ont été comparés à ceux provenant de simula- tions numériques utilisant des éléments finis afin de développer une meilleure compréhension des mécanismes de génération des charges imputables à la croissance racinaire. Le sable a été modélisé comme un matériau de type Mohr-Coulomb à cette fin. Les résultats numéri- ques sont qualitativement en accord avec les résultats expérimentaux. ©2011 International Society of Arboriculture
January 2011
Title Name |
Pages |
Delete |
Url |
Empty |
Search Text Block
Page #page_num
#doc_title
Hi $receivername|$receiveremail,
$sendername|$senderemail wrote these comments for you:
$message
$sendername|$senderemail would like for you to view the following digital edition.
Please click on the page below to be directed to the digital edition:
$thumbnail$pagenum
$link$pagenum