Arboriculture & Urban Forestry 46(5): September 2020 Hale S, Gardiner B, Wellpott A, Nicoll B, Achim A. 2010. Wind loading of trees: influence of tree size and competition. European Journal of Forest Research. 131:203-217. James K. 2003. Dynamic loading of trees. Journal of Arboriculture. 29:165-171. James KR, Dahle GA, Grabosky J, Kane B, Detter A. 2014. Tree biomechanics literature review: dynamics. Arboriculture & Urban Forestry. 40:1-15. James K, Hallam C, Spencer C. 2013a. Measuring tilt of tree struc- tural root zones under static and wind loading. Agricultural & Forest Meteorology. 168:160-167. James K, Hallam C, Spencer C. 2013b. Tree stability in winds: measurements of root plate tilt. Biosystems Engineering. 115:324-331. James KR, Haritos N, Ades PK. 2006. Mechanical stability of trees under dynamic loads. American Journal of Botany. 93:1522-1530. James KR, Moore JR, Slater D, Dahle GA. 2018. Tree biomechan- ics. CAB Reviews. 12(38):1-11. Jonsson MJ, Foetzki A, Kalberer M, Lundsrom T, Ammann W, Stockli V. 2006. Root-soil rotation stiffness of Norway spruce (Picea abies (L.) Karst) growing on subalpine forested slopes. Plant Soil. 285:267-277. Kane B. 2014. Determining parameters related to the likelihood of failure of red oak (Quercus rubra L.) from winching tests. Trees. 28:1667-1677. Kane B, Clouston P. 2008. Tree pulling tests of large shade trees in the genus Acer. Arboriculture & Urban Forestry. 34:101-109. Kozlowski T, Pallardy S. 1997. Physiology of woody plants. 2nd Ed. San Diego (CA, USA): Academic Press. 411 p. Lyford WH, Wilson BF. 1964. Development of the root system of Acer rubrum L. Petersham (MA, USA): Harvard University. Harvard Forest Paper No. 10. 20 p. Moore GM. 2014. Wind-thrown trees: storms or management? Arboriculture & Urban Forestry. 40:53-69. Moore JR, Maguire DA. 2004. Natural sway frequencies and damping ratios of trees: concepts, review and synthesis of previous studies. Trees. 18:195-203. Neild SA, Wood CJ. 1999. Estimating stem and root-anchorage flexibility in trees. Tree Physiology. 19:141-151. Niklas KJ. 1992. Plant mechanics: an engineering approach to plant form and function. Chicago (IL, USA): The University of Chicago Press. 607 p. Niklas KJ. 2002. Wind, size, and tree safety. Journal of Arbori- culture. 28:84-93. Peltola HM. 2006. Mechanical stability of trees under static loads. American Journal of Botany. 93:1501-1511. Sebera V, Kunecky J, Praus K, Tippner J, Horacek P. 2016. Strain transfer from xylem to bark surface analyzed by digital image correlation. Wood Science and Technology. 50:773-787. Sebera V, Praus L, Tippner J, Kunecky J, Cepela J, Wimmer R. 2014. Using optical full-field measurement based on digital image correlation to measure strain on a tree subjected to mechanical load. Trees. 28:1173-1184. Smiley ET, Holmes L, Fraedrich BR. 2014. Pruning of buttress roots and stability changes of red maple (Acer rubrum). Arboriculture & Urban Forestry. 40:230-236. 331 Stokes A. 1999. Strain distribution during anchorage failure of Pinus pinaster Ait. at different ages and tree response to wind-induced root movement. Plant and Soil. 217:17-27. Yang M, Défossez P, Danjon F, Fourcaud T. 2014. Tree stability under wind: simulating uprooting with root breakage using a finite element method. Annals of Botany. 114:695-709. ACKNOWLEDGMENTS This research was funded in part by NIFA through the McIntire Stennis Program Project #WVA00125, a Tree Fund Duling Grant 14-JD-02, WVU Davis College Division of Forestry & Natural Resources, and The Morton Arboretum. We would like to thank Sam Adams (currently with the WV Division of Forestry Urban & Community Forestry Program) for helping collect the data, as well as Tom Smiley (Bartlett Tree Research Laboratory) and Matt Melis (NASA Glenn Research Center) for developing the initial idea for this research at Biomechanics Week 2013. Kenneth E. Beezley West Virginia University Division of Forestry and Natural Resources Morgantown, WV, USA Gregory A. Dahle (corresponding author) West Virginia University Division of Forestry and Natural Resources Morgantown, WV, USA
[email protected] Jason Miesbauer The Morton Arboretum Lisle, IL, USA David DeVallance InnoRenew CoE Izola, Slovenia University of Primorska Koper, Slovenia Conflicts of Interest: The authors reported no conflicts of interest. Résumé. Les arbres réagissent à des charges mécaniques pendant toute leur durée de vie sinon ils risquent une mortalité prématu- rée. La contrainte résultant des charges interceptées par la cano- pée et répercutées à travers l’arbre est d’une importance significative, non seulement pour la survie de l’arbre, mais pour la sécurité et le bien-être de la population humaine avoisinante. Dans le but de tester la fonction de l’orientation de l’arbre par rapport à une charge appliquée, des tests de charge statique furent menés sur 15 chênes des marais matures (Quercus palustris Muenchh.). Nous avons appliqué les tests de charge statique pour incliner les arbres de 0.1° par rapport à leur position naturelle. Nous avons utilisé un système de corrélation d’images numé- riques pour cartographier les contraintes sous le vent, du côté du vent ainsi que les racines tangentielles dans la zone de transition entre ©2020 International Society of Arboriculture
September 2020
| Title Name |
Pages |
Delete |
Url |
| Empty |
Ai generated response may be inaccurate.
Search Text Block
Page #page_num
#doc_title
Hi $receivername|$receiveremail,
$sendername|$senderemail wrote these comments for you:
$message
$sendername|$senderemail would like for you to view the following digital edition.
Please click on the page below to be directed to the digital edition:
$thumbnail$pagenum
$link$pagenum