Arboriculture & Urban Forestry 34(3): May 2008 and D. Quickert (Tree Associates, Inc.) for their help in root excavation, and N.H. Willits for help in statistically analyzing the data. Research was supported by the Elvenia J. Slosson Ornamental Horticulture En- dowment. LITERATURE CITED Barker, P.A. 1987. Proactive strategies to mediate tree-root damage to sidewalks. Combined Proceedings of the International Plant Propa- gators’ Society 37:56–61. Bowman, F.T. 1941. Root types among apple seedlings—A basis for selecting rootstocks. Agricultural Gazette of New South Wales 52: 427–428, 475–477. Clausnitzer, V., and J.W. Hopmans. 1994. Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant and Soil 164:299–314. Costello, L.R., and K.S. Jones. 2003. Reducing Infrastructure Damage by Tree Roots: A Compendium of Strategies. Western Chapter- International Society of Arboriculture, Cohasset, CA. Coutts, M.P., and B.C. Nicoll. 1991. Orientation of lateral roots of trees. I. Upward growth of surface roots and deflection near the soil surface. The New Phytologist 119:227–234. D’Amato, N.E., T.D. Sydnor, R. Hunt, and B. Bishop. 2002. Root growth beneath sidewalks near trees of four genera. Journal of Ar- boriculture 28:283–290. Dirr, M.A., and J.J. Frett. 1983. Rooting chinese elm and Japanese zelkova cuttings. The Plant Propagator 29:10–11. Evans, G.E. 1971. Relationship of harvest date to rooting response of softwood cuttings of selected woody ornamentals. The Plant Propa- gator 17:3–9. Feldman, L.J. 1988. The habits of roots. Bioscience 38:612–618. Firn, R.D., and J. Digby. 1997. Solving the puzzle of gravitropism—Has a lost piece been found? Planta 203:S159–S163. Hamilton, W.D. 1984a. Sidewalk/curb breaking tree roots. 1. Why tree roots cause pavement problems. Arboricultural Journal 8:37–44. ———. 1984b. Sidewalk/curb-breaking tree roots. 2. Management to minimize existing pavement problems by tree roots. Arboricultural Journal 8:223–234. Johnson, S.P., and T.W. Tibbitts. 1968. The liminal angle of a plagio- geotropic organ under weightlessness. Bioscience 18:655–661. Jourdan, C., N. Michaux-Ferrière, and F. Perbal. 2000. Root system architecture and gravitropism in the oil palm. Annals of Botany 85: 861–868. Kolesnikov, V.A. 1930. The root system of fruit tree seedlings. Journal of Pomology 8:197–210. Külla, T., and K. Lõhmus. 1999. Influence of cultivation method on root grafting in Norway spruce [Picea abies (L.) Karst.]. Plant and Soil 217:91–100. Lee, C.I., J.L. Paul, and W.P. Hackett. 1976. Root promotion on stem cuttings of several ornamental plant species by acid or base pretreat- ment. Combined Proceedings of the International Plant Propagators’ Society 26:95–99. Masataka, Y., T. Takyu, and T. Sasa. 1997. Gravitropic reaction in the growth of tea roots. Nihon Sakumotsu Gakkai Kiji 66:472–478. McPherson, E.G., and P.J. Peper. 2000. Costs due to conflicts between street tree root growth and hardscape, pp. 15–18. In Costello, L.R., E.G. McPherson, D.W. Burger, and L.L. Dodge (Eds.). Strategies to Reduce Infrastructure Damage by Tree Roots: Proceedings of a Sym- posium for Researchers and Practitioners. Western Chapter, Interna- tional Society of Arboriculture, Cohasset, CA. Miller, C.R., I. Ochoa, K.L. Nielsen, D. Beck, and J.P. Lynch. 2003. Genetic variation for adventitious rooting in response to low phos- phorus availability: Potential utility for phosphorus acquisition from stratified soils. Functional Plant Biology 30:973–998. Nakamoto, T. 1994. Plagiogravitropism of maize roots. Plant and Soil 165:327–332. 189 Nathenson, R., and A. Jarabak. 2001. The evolution of air-tools for use in arboriculture. Tree Care Industry 13:47–48. Oyanagi, A., A. Sato, and M. Wada. 1991. Varietal differences in geo- tropic response of primary seminal roots in Japanese wheat. Nihon Sakumotsu Gakkai Kiji 60:312–319. Peper, P., and G. McPherson. 1995. Street trees and urban infrastructure: Getting at the root of the problem. Newsletter of the Western Center for Urban Forest Research and Education, Fall Update 1995:3. Perry, T.O. 1982. The ecology of tree roots and the practical significance thereof. Journal of Arboriculture 8:197–211. Rubio, G., H. Liao, X. Yan, and J.P. Lynch. 2003. Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Science 43:598–607. Serebryakov, A. 1962. Ecological Morphology of Plants. Vyschaja chkola Publishers, Moscow, Russia. 72 pp. Smiley, E.T. 2001. Air excavation to improve tree health. Tree Care Industry 13:44–48. Sommer, R., and C.L. Cecchettini. 1992. Street tree location and side- walk management preferences of urban householders. Journal of Ar- boriculture 18:188–191. Sommer, R., and J. Summit. 1996. An evaluation of tree descriptions in a popular garden guide. Journal of Arboriculture 22:155–159. Tsutumi, D., K. Kosugi, and T. Mizuyama. 2004. Three-dimensional modeling of hydrotropism effects on plant root architecture along a hillside. Vadose Zone Journal 3:1017–1030. Wagar, J.A., and P.A. Barker. 1985. Tree root damage to sidewalks and curbs. Journal of Arboriculture 9:177–181. David W. Burger (corresponding author) Department of Plant Sciences Mailstop #2 University of California Davis, CA 95616, U.S.
[email protected] Todd E. Prager City Arborist 13125 SW Hall Blvd. Tigard, OR 97223, U.S. Résumé. Des lignées de semis de trois espèces d’arbres (Fraxinus uhdei, Pistacia chinensis et Zelkova serrata) ont été plantés en champs et laissés en croissance durant 18 mois. Une excavation hydraulique à l’air suivie de photographies digitales, d’une modélisation en trois di- mensions et d’une analyse des racines a permis de déterminer qu’il n’y avait pas de différences significatives dans l’architecture des racines parmi ces trois espèces ainsi qu’au sein de chacune des populations par espèce. Parmi les espèces d’arbres, Pistacia chinensis avait en moyenne les systèmes racinaires les plus profonds et les plus orientés verticalement tandis que Fraxinus uhdei et Zelkova serrata avaient les plus superfi- ciels; néanmoins, il y avait pour chaque espèce des génotypes plus superficiels et d’autres plus profonds. Les génotypes plus superficiels et plus profonds de Fraxinus et de Zelkova sélectionnés à partir de popu- lations de semis ont été propagésvégétativement à partir de boutures, plantés en champs et laissés en croissance durant 5 à 6 ans. Suite à l’excavation et la création d’un modèle 3-D, l’architecture des racines des clones propagésvégétativement avait des angles très faibles. Les clones propagésvégétativement de parents à racines superficielles étaient eux aussi superficiels, maintenant de ce fait l’architecture raci- naire des parents. Les clones propagésvégétativement de parents à racines profondes avaient des racines superficielles; ils n’avaient donc pas maintenu l’architecture racinaire des parents. Les résultats sont dis- cutés en termes de facteurs génétique, physiologique (traitement d’auxine et formation de racines adventives) et environnemental (hu- midité du sol) qui peuvent affecter la croissance et le développement racinaire. ©2008 International Society of Arboriculture
May 2008
Title Name |
Pages |
Delete |
Url |
Empty |
Search Text Block
Page #page_num
#doc_title
Hi $receivername|$receiveremail,
$sendername|$senderemail wrote these comments for you:
$message
$sendername|$senderemail would like for you to view the following digital edition.
Please click on the page below to be directed to the digital edition:
$thumbnail$pagenum
$link$pagenum